West Bengal State University

B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2015

PART - III PHYSICS — HONOURS

Paper - V

Duration: 4 Hours]

[Full Marks: 100

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer any ten questions :

 $10 \times 2 = 20$

- i) Starting from the Lagrangian of a free particle $\left(L = \frac{1}{2}m\dot{x}^2\right)$, obtain the Hamiltonian and set up the Hamilton's equations of motion.
- ii) What is meant by non-holonomic constraint? Give an example.
- iii) What is meant by virtual displacement? In what sense is it different from actual displacement?
- iv) For a particle with rest mass m_0 and velocity ν prove that $E^2 p^2 c^2 = m_0^2 c^4$, where the symbols have their usual meaning.
- v) Does the density of an object change due to relative motion of the observer? If yes, by what factor?
- vi) State the postulate of equal apriori probability.
- vii) A system with allowed energy levels O and E is in equilibrium with a thermal heat bath at temperature T. If the probability of occupying the excited state is half that of the ground state, show that $T = E/(k_B \ln 2)$, where k_B is the Boltzman's constant.
- viii) What is Fermi energy? Explain briefly.
- ix) A particle is represented by wave function $\psi(x) = Ae^{ip.x}$, where A is a constant. Is it consistent with uncertainty principle?

[Turn over

SUB-B.SC.(HN)-PHSA-12013

PHSA(HN)-05

- Show that energy eigenstates of a particle moving in a one dimensional potential V(x) have definite parity if V(x) = V(-x).
- xi) What is the Compton wavelength of a particle ? What is its significance ?
- xii) Given $[x, p] = i\hbar$, find $[x, p^3]$
- xiii) Why operators associated with any dynamical variables are taken to be
- xiv) A normalized wave function $\psi(x,t) = \sum_{n} C_n(t) \psi_n(x)$, where ψ_n is a set of complete orthonormal eigenfunctions. Show that $\sum_{n} |C_n|^2 = 1$.
- xv) Calculate the Lande-g factor for the atomic state ${}^{2}P_{1/2}$.
- xvi) What is Raman effect?

Group - A

(Answer any one question.)

- a) State D'Alembert's principle. A frictionless block of mass m is placed on an incline making an angle α with the horizontal. The incline is now given a horizontal acceleration in the vertical plane of the incline such that the block cannot slide. Use D'Alembert's principle to find the acceleration given.
 - b) The point of suspension of a simple pendulum (length l, mass m) is moving on a horizontal line according to the relation $x = a\cos\omega t$ (a and ω are constants). Find the Lagrangian and show that the equation of motion for small angular displacement θ is given by $\ddot{\theta} + \frac{g}{l}\theta = \frac{a\omega^2}{l}\cos\omega t. \qquad (1+4) + (3+2)$
- 3. a) Find the positions and stability of the equilibrium for the given potential $V(x) = ax^2 + bx^3$ with a, b being constants. Draw the profile of the potential indicating your results.
 - b) Show that a dynamical variable F = F(q, p, t) is a constant of motion if $\frac{\partial F}{\partial t} + [F, H]_{PB} = 0$, where H is the Hamiltonian of the system and PB denotes Poisson's bracket.

SUB-B.SC.(HN)-PHSA-12013

What is the criteria that a transformation $(q,p) \rightarrow (Q,P)$ is canonical? Show that the transformation P = aq + bp; Q = cq + dp is canonical if ad - bc = 1. $(a, b, c, d \rightarrow \text{constants})$.

Group - B

(Answer any one question.)

- Show that two successive Lorentz transformations in the same direction with velocity parameters β_1 and β_2 is equivalent to a single Lorentz transformation with velocity parameter given by $\beta = (\beta_1 + \beta_2)/(1 + \beta_1\beta_2)$. 4
 - b) A particle is moving in one dimension. Draw the world line of the particle if it is at rest. What is the nature of the world line of a photon? Show graphically. $(1\frac{1}{2} + 1\frac{1}{2})$
 - c) Distinguish between space-like, time-like and light-like intervals. 3
- Muons have life-time $\sim 2 \times 10^{-6}$ sec and speed 0.998 c with respect to ground observer. How much distance it may travel before decaying with respect to ground observer. Derive the relation that you use. 2+3
 - b) Define what is meant by proper velocity.
 - c) A particle has relativistic energy-momenta (E, \vec{p}) . Measured from another frame it is $(E', \vec{p'})$, where the 2nd frame moves with speed v along the direction of the particle with respect to the first frame. Find the relation between $(E', \vec{p'})$ and (E, \vec{p}) .

Group - C

(Answer any two questions.)

6. a) Given $\Gamma(k+1) = k! = \int_0^\infty \mathrm{d}x \, x^k e^{-x}$. Show that $f(x) = x^k e^{-x}$ is a sharply peaked function with peak at x = k and the integral can be approximated by $k! \approx k^k e^{-k} \sigma_k$, where σ_x is the width of the peak. Assuming σ_k too small compared to k, show that $\ln k! = k \ln k - k$.

[Turn over

- b) N coins are lined up in a straight chain. A macrostate (N, H) is defined such that there are total H number of heads while rest of the coins being tails. Find total number of
 - i) all possible macrostates of the system,
 - ii) all possible microstates (X) of the system,
 - iii) all allowed microstates Ω (N, H) corresponding to the macrostate (N, H),

Using Stirling formula, show that most probable macrostate is obtained for H = N/2,

Show that under this approximation $\Omega\left(N, \frac{N}{2}\right) \approx X$.

- 7. a) Distinguish between micro-canonical and canonical ensemble.
 - b) For a system represented by a canonical ensemble at temperature T, probability P_r of a microstate having energy E_r is given by $P_r = \frac{1}{Z} e^{-\beta E_r/kT}$, where symbols have their usual meaning.

Show that (i) internal energy $U \equiv \overline{E}_r = -\frac{\partial}{\partial \beta} \ln Z$, (ii) Helmholtz free energy, $A = -\beta \ln Z$, and (iii) entropy, $S = -k \sum_r P_r \ln P_r$.

- c) Assuming the formula for entropy above is valid for microcanonical ensemble, show that $S = k \ln \Omega \left(E_r \right)$, where $\Omega \left(E_r \right)$ is the total number of microstates with energy E_r . 2 + (2 + 2 + 2) + 2
- 8. a) Derive Fermi-Dirac distribution function f(E), stating clearly the assumptions made in the derivation.
 - b) Define density function g (E). Find an expression for g (E) in the case of a two-dimensional free electron gas contained in an area A.
 - c) Show that the number of electrons per unit area is given by

$$n = \frac{N}{A} = \frac{1}{A} \cdot \int_{0}^{\infty} dE \ g(E) \ f(E) = \frac{4\pi m_e k_B T}{h^2} \ln \left(e^{E_F / k_B T} + 1 \right)$$

[All symbols have usual meaning.]

4+3+3

SUB-B.SC.(HN)-PHSA-12013

Group - D

(Answer any three questions.)

- 9. a) Using the general definition of the expectation value of an operator, prove that $\frac{d}{dt} < x > = \frac{1}{m} < p_x >$, where the symbols have their usual meanings.
 - b) The ground state wave function of a one-dimensional harmonic oscillator (of mass m and classical frequency ω) is

$$\psi_0(x) = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{\frac{1}{2}} e^{-\frac{\alpha^2 x^2}{2}}$$

where
$$\left(\alpha = \sqrt{\frac{m\omega}{\hbar}}\right)$$
.

What is the energy corresponding to this state? Discuss with proper explanation, whether this state is an eigenfunction of the momentum operator or not.

- What is the physical meaning of the expectation value of an observable?

 From physical correlation, would you expect a non-zero value $\langle p \rangle$ for a bound state? 3 + (1+3) + (1+2)
- 10. a) To qualify as wavefunction, a function must be continuous and square integrable, justify on what physical ground these two criteria are imposed defining clearly what is meant by square integrability of a function.
 - b) Write down the time-independent Schrödinger equation in one-dimension for the potential V(x).
 - Show that the first derivative of the wavefunction $\left(\frac{\partial \psi}{\partial x}\right)$ is continuous for all x if V(x) is continuous or at most has finite No. of finite discontinuity.
 - ii) What should be the nature of potential V(x) such that $\left(\frac{\partial \psi}{\partial x}\right)$ is not continuous at a point x_0 .
 - iii) What are the physical implications of the above results? (1+2)+(2+2+3)

SUB-B.SC.(HN)-PHSA-12013

[Turn over

PHSA(HN)-05

- 11. a) Determine the probability current density for the wave-packet represented by $\psi(x) = e^{-\alpha^2 x^2/2} e^{ikx}$.
 - b) The wave-function of a free particle confined in a box is given by $\psi_n(x) = \sqrt{\frac{2}{L}} \cdot \sin\left(\frac{n\pi x}{L}\right)$. Show that the probability to find the particle in any small interval (Δx) lying between x and $x + \Delta x$ is independent of x if n is large.
 - Show that the operator P is linear if $P\psi(x) = \psi(-x)$.
 - d) Find the expectation value of $(L_x^2 + L_y^2)$ in a state having l = 1 and m = -1, symbols have their usual meaning. 3 + 3 + 2 + 2
- 12. a) For a one-dimensional harmonic oscillator with mass m and angular frequency ω , define $\hat{a}_{\mp} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} \pm i \frac{\hat{p}x}{m\omega} \right)$. Using the basic commutation relation between \hat{x} and $\hat{p}x$, show that (i) $\left[\hat{a}_{-}, \hat{a}_{+} \right] = 1$ and $\hat{H} = \hbar\omega \left(\hat{a}_{+}, \hat{a}_{-} + \frac{1}{2} \right)$, where \hat{H} is the Hamiltonian of the system.
 - b) If ψ_n and λ_n are the eigenstates and eigenvalues of the operator $\hat{N} \equiv \hat{a}_+ \hat{a}_-$, show that $\left(\hat{a}_\pm \psi_n\right)$ are also eigenstates of \hat{N} with eigenvalue ($\lambda_n \pm 1$). Hence find the eivenvalue of \hat{H} .
 - Azimuthal part of the wave-function of a particle in a central potential is given by $\Phi(\varphi) = A_e^{im\varphi}$, where A and m are constants. Show that m should be an integer.

Group - E

(Answer any one question.)

- 13. a) i) What is meant by space-quantization? What role does magnetic quantum number play in space-quantization? Explain in the light of vector atom model.
 - ii) "Uncertainty principle prohibits the angular momentum vector \overrightarrow{L} from having a definite direction." Explain why. Check if this fact is incorporated into the vector atom model.
 - b) In Stern-Garlach experiment, what is the expected result if atomic dipoles are randomly oriented? What was the observed result? How the result is explained? (3+3)+(1+1+2)
- 14. a) i) Explain what is meant by spin-orbit coupling.
 - ii) Show how spin-orbit coupling explains the fine structure splitting of $3P \rightarrow 3S$ transition in sodium to D_1 and D_2 lines.
 - State Hund's rules to determine the ground state of a manyelectron atom using L-S coupling scheme.
 - ii) Show that the ground state of nitrogen $(1s^22s^22p^3)$ is given by $^4S_{3/2}$ using Hund's rule. (2+3)+(3+2)