West Bengal State University

B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2015

PART - II

MATHEMATICS — HONOURS

Paper - III

Duration: 4 Hours]

[Full Marks: 100

The figures in the margin indicate full marks.

Group - A

Answer any three questions.

Show that A, the set of all even permutations of [1, 2, 3] is a cyclic

 $3 \times 5 = 15$

- Solve the equation $3x^6 + x^5 27x^4 + 27x^2 x 3 = 0$. ((G, a) be an infinite cyclic group generated by a then prove that a and
- 2. Solve the equation by Cardan's method:

Write down the permutation (
$$\frac{1}{3} + \frac{2}{3} + \frac{1}{3} + \frac{1}{$$

- Prove that special roots of the equation $x^9 1 = 0$ are the roots of the equation $x^{6} + x^{3} + 1 = 0$ and their values are $\cos \frac{2r\pi}{9} + i \sin \frac{2r\pi}{9}$, r = 1, 2, 4.
- Solve by Ferraris' method:

$$x^4 + 2x^3 - 7x^2 - 8x + 12 = 0$$

- $x^4 + 2x^3 7x^2 8x + 12 = 0$ The lower rank contracts and the lower rank rank world. a) If a, b are positive rational numbers and a > b then prove that 5. $a^{2a} < (a+b)^{a+b}(a-b)^{a-b}$.
 - State Cauchy-Schwarz inequality.

RUB-B.A. / B. Sc. (HW)-MTMA-0001

SUB-B.A./B.Sc.(HN)-MTMA-6001

[Turn over

		the state of the prove that
6.	a)	If a , b , c are all positive and $abc = k^3$ then prove that
		$(1+a)(1+b)(1+c) \ge (1+k)^3$. M. (** norroll) mod 8\ 58.0\ A. 2
	b)	If $a_1, a_2,, a_n$ are all positive and $S = a_1 + a_2 + + a_n$ then prove that
		$\frac{S}{S-a_1} + \frac{S}{S-a_2} + \dots + \frac{S}{S-a_n} \ge \frac{n^2}{n-1}$.
		$S-a_1$ $S-a_2$ $S-a_n$ $n-1$ [smell 4] noticing
		strom that stor Group - B at an estuant sall
		Answer any <i>one</i> question. $1 \times 10 = 10$
7.	a)	Show that A_3 the set of all even permutations of { 1, 2, 3 } is a cyclic
		group with respect to product of permutations. Is it commutative?
		Answer with reason. 4 + 1
	b)	If (G, o) be an infinite cyclic group generated by a then prove that a and
		a^{-1} are the only generators of the group.
	c)	Write down the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 2 & 1 & 3 & 4 \end{pmatrix}$ as a product of
		disjoint cycles and then express it as a product of transpositions. 1 + 1
8.	a)	Let H be a subgroup of a group G. Then prove that the set of all left
		cosets of H in G and the set of all right cosets of H in G have the same
		cardinality.
	b)	Prove that every group of prime order is cyclic.
	c)	Show that if two right cosets Ha and Hb be distinct then two left cosets
	prove	$a^{-1}H$ and $b^{-1}H$ are distinct.
	d)	Find the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$.
		(4 5 1 3 2)
SUB-	B.A./B.8	Sc.(HN)-MTMA-6001
1590	mart	

[Turn over

e that	cle Frove that elective to a Group - Quora distinct, electivalues of a
e that	Answer any <i>two</i> questions. $2 \times 10 = 20$
A. 2	
	9. a) Define basis of a vector space. Prove that if $\{\alpha_1, \alpha_2,, \alpha_n\}$ be a basis of a
ove that	finite dimensional vector space V then any set of linearly independent
3	vectors of V contains at most n vectors. $2+2$
Duration	[a,b]
	b) Let V be a vector space of all real matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and let W be a subset
	of those matrices for which $a + b = 0$. Prove that W is a subspace of V.
10 = 10	2+2
a evelio	Fillid a basis of W.
a cyclic	Find the coordinates of the polynomial $(x-3x^2)$ relative to the ordered
atative ?	basis $\{1-x, 1+x, 1-x^2\}$ in the vector space P_2 of all polynomials of
4 + 1	
at a and	degree at most 2 over the field of real fidules.
3	10. a) Let A & B be two matrices over the same field F such that AB is defined. Then prove that rank (AB) < min (rank A rank B). 5
oduct of	Then prove that rank (AD) = min (ranks, ranks)
oduct of	b) If row rank of the matrix
1+1	has convergent subsequence out the s 5 to 6 or convergence
of all left	$A = \begin{bmatrix} 3 & 4 & -3 & 5 \\ 1 & 2 & -1 & 7 \\ 4 & 1 & 2 & 9 \\ 2 & -1 & 4 & k \end{bmatrix}$
the same	
4	be three then find the value of k. 5
OB THE STREET	
3	11. a) If α and β be any two vectors in an inner product space $V(F)$ then
eft cosets	prove that $ (\alpha, \beta) \le \alpha \beta $.
2	b) If α, β be vectors in a real inner product space and $\ \alpha\ = \ \beta\ $, then show
-	3
1	that $(\alpha + \beta, \alpha - \beta) = 0$. Is an alternatible at 10 0

SUB-B.A./B.Sc.(HN)-MTMA-6001

c)	de la constant de la	a
	real symmetric matrix as at 1	3
12. a)		;
b)	Apply Gram-Schmidt orthogonalisation process to the set of vectors	
	$\{(1,-1,-1), (2,0,1), (0,1,1)\}$ to obtain an orthogonal basis of \mathbb{R}^3 with standard inner product.	
	Group - D W to alead a boil	
he ordered	of every any two questions.	
13. a)	If a sequence $\{x_n\}$ converges to l , then prove that every subsequence of $\{x_n\}$ also converges to l .	
	n, and converges to L.	
(d g	State and prove Bolzano-Weierstrass theorem on subsequence. 4	
c) .	Show that the sequence $\{a_n\}$ defined by $a_n = \left(1 - \frac{1}{n}\right) \sin \frac{n\pi}{2}$, $n = 1, 2,$	
	has convergent subsequence but the sequence is not convergent.	
14. a)	Use Cauchy's condensation test to show that $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges for $p > 1$ and diverges for $0 < n < 1$.	
	for $p > 1$ and diverges for $0 . Test the convergence of the series$	
b)	Test the convergence of the series we was add bus to 11 12 13	
	$\frac{a}{b} + \frac{1+a}{1+b} + \frac{(1+a)(2+a)}{(1+b)(2+b)} + \dots $	
c)	State and prove Leibnitz test for an alternating series.	
SUB-B.A./B.S	c.(HN)-MTMA-6001	
	1000-AMTM-(RR) - 8.81 A 8.8110	

- 18. Let (a, b) be an interior point of domain of definition of a function f of two variables x, y. If $f_x(a,b)$ exists and $f_y(x,y)$ is continuous at (a, b), then prove that f(x, y) is differentiable at (a, b).
- 19. If

$$f(x, y) = \begin{cases} xy, & \text{when } |x| \ge |y| \\ -xy, & \text{when } |x| < |y| \end{cases}$$

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

Which condition of Schwarz's theorem is not satisfied by f?

- 20. State and prove the converse of Euler's theorem on homogeneous function of three variables.
- 21. If a function f(x, y) of two variables x and y when expressed in terms of new variables u and v defined by $x = \frac{1}{2}(u+v)$ and $y^2 = uv$ becomes g(u, v), then show that $\frac{\partial^2 g}{\partial u \partial v} = \frac{1}{4} \left(\frac{\partial^2 f}{\partial x^2} + \frac{2x}{y} \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} + \frac{1}{y} \frac{\partial f}{\partial y} \right)$.
- 22. Given $f(x+y) = \frac{f(x) + f(y)}{1 f(x) \cdot f(y)}$; $f(x) \cdot f(y) \neq 1$, where x and y are independent variables and f(t) is a differentiable function of t and f(0) = 0. Using the property of Jacobian, show that $f(t) = \tan \alpha t$, where α is a constant.
- 23. Using the method of Jacobian, show that the functions u = x + y z, v = x y + z, $w = x^2 + y^2 + z^2 2yz$ are dependent. Find also the relation between them.

SUB-B.A./B.Sc.(HN)-MTMA-6001

of a function f of two s at (a, b), then prove

Ali Ali Io

?

nogeneous function of

essed in terms of new ecomes g(u, v), then

and y are independent f(0) = 0. Using the a constant.

actions u = x + y - z, and also the relation Using the implicit function theorem, prove that the equation $x^2y^2+x^2+y^2-1=0$ determines y as a function of x say $y=\phi(x)$ in the neighbourhood of (0, 1) and $\phi'(0)=0$. Also find $\phi(x)$.

25. If $u = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$, then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$.

Group - F

Answer any two questions.

 $2 \times 5 = 10$

26. Find the area of the loop of the curve $a^3y^2 = x^4(b+x)$.

27. Find the volume of the solid obtained by revolving the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ about its axis of symmetry.

28. Find the moment of inertia of a solid sphere of radius α and mass M about the axes at the centre.

29. Find the coordinate of the centre of gravity of a figure bounded by the coordinate axes and the arc of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ situated in the first quadrant.

SUB-B.A./B.Sc.(HN)-MTMA-6001