West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2015 PART-II

CHEMISTRY- Honours

Paper- IV

Duration: 2 Hours

Full Marks: 50

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Use separate answer scripts for [CEMAT-24-PA & CEMAT-24-PB]

CEMAT-24-PA

Answer any two questions, taking one from each Unit.

State the postulates of Planck's quantum theory. Planck distribution law for black body radiation in the frequency range v to v + d v is $u_{\nu}d_{\nu} = \frac{8\pi v^2}{c^3} \frac{hv}{e^{hv/kT}-1} dv$. Show that the wavelength corresponding to the maximum energy density is inversely proportional to the absolute temperature. [Terms have their usual significance]

Define a Hermitian operator. Confirm whether the operator, $\frac{h}{2\pi i} \frac{d}{dx}$ is Hermitian or not.

SUB.-B.Sc.(HN)-CEMA-6044

[Turn over

- c) What does the term degenerate levels mean? Determine the degree of degeneracy of the level $\frac{38h^2}{8ma^2}$ of a particle in a cubical box. 1+2
- d) In the Compton experiment, a beam of X-rays with wavelength 0.0588 nm is scattered through an angle of 45°. What is the wavelength of the scattered beam?
- Calculate the uncertainty in position assuming uncertainty in momentum within 0.1% for (i) a tennis ball weighing 200 gm and moving with a velocity of 10 metre/sec (ii) an electron moving in an atom with a velocity of 2 x 10 8 cm/sec. Comment on the result.
 - b) Which of the following functions are acceptable in quantum mechanics?
 - (i) $\cos x + \sin x$ for $0 \le x \le \frac{\pi}{2}$
 - (ii) $e^{-\alpha x}$ for $x \le 0$.
 - Show that the length of the one dimensional box is an integral multiple of $\lambda/2$, where λ is the wavelength associated with the particle wave. 3
 - d) If \hat{A} and \hat{B} are Hermitian operators, show that \hat{A} \hat{B} is a Hermitian operator if \hat{A} \hat{B} = \hat{B} \hat{A} .
 - e) Determine the value of x at which the first excited wave function of the simple harmonic oscillator exhibits maximum or minimum.

[Given : $\psi_1(x) = \left(\frac{a}{4\pi}\right)^{\frac{1}{4}} (2\alpha^{\frac{1}{2}}x)e^{-\alpha x^2/2}$, $\alpha = (k\mu)^{\frac{1}{2}}/\hbar$, k = force constant, $\mu = \text{reduced mass}$]

SUB.-W.Be.(HM)-CEMA-6044

e the degree of 1+2

th wavelength the wavelength

200 gm and

mechanics?

gral multiple e wave. 3

Hermitian $2\frac{1}{2}$

ction of the

e constant,

 $2\frac{1}{2}$

- 3. a) How much more likely is a 1s electron in a hydrogen atom to be at a distance a_0 from the nucleus than at the distance $a_0/2$?

 Given: Radial wave function of 1s electron: $R = \frac{2}{a_0^{3/2}} e^{-r/a_0}$.
 - b) "In the photostationary state of dimerization of anthracene at its large concentration, the concentration of dimer is independent of the concentration of monomers." Justify.
 - An uranyl oxalate actinometer is irradiated for 20 mins with light of $\lambda = 4350$ Å and oxalic acid equivalent to 15 ml of 0.001 (M) KMnO₄ is found to have been decomposed. The intensity of the incident beam is $3.245 \times 10^{16} \, \mathrm{S}^{-1}$. Find the quantum yield.
 - d) Explain photosensitized reactions and give an example of photosensitized reaction which is useful to mankind.
- 4. a) Hydrogen wave function is given by $\psi_{1S} = \left(1/\pi a_0^3\right)^{1/2} e^{-r/a_0}$. Determine the most probable value of r in this state.
 - b) Briefly explain the phenomena of fluorescence and phosphorescence. 3

SUB.-B.Sc.(HN)-CEMA-6044

[Turn over

- c) The reaction ($2A \rightleftharpoons A_2$) occurs both thermally and photochemically. The photochemical reaction takes place with the following steps :
 - (i) $A \xrightarrow{h\nu(I_{abs})} A$
 - (ii) $A^* + A \xrightarrow{K_2} A_2$
 - (iii) $A_2 \xrightarrow{K_3} 2A$
 - (iv) $A^* \xrightarrow{K_4} A + hv'$.

Applying the steady state approximation to A^* ,

Show that $\left[A_2\right] = \frac{I_{abs}}{K_3 \left[1 + K_4 / K_2(A)\right]}$ at photostationary equilibrium.

Also, show that $\begin{bmatrix} A_2 \end{bmatrix}$ is independent of $\begin{bmatrix} A \end{bmatrix}$, when $\begin{bmatrix} A \end{bmatrix}$ is present in large excess.

CEMAT-24-PB

Answer any two questions taking one from each unit.

Unit - 1

5. a) What do you mean by fugacity of a gas? Express fugacity in terms of measurable properties (such as P, V) of the gas and state how it can be determined.

nically.

b) Show that

$$(i) \qquad \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_j\neq n_i} = \left(\frac{\partial A}{\partial n_i}\right)_{T,V,n_j\neq n_i}$$

(ii)
$$\frac{\mathrm{d} \ln k_p}{\mathrm{d} T} = \frac{\Delta H^{\circ}}{RT^2}.$$
 2 × 2

- c) At 25°C for the reaction: $Br_2(g) = 2Br(g)$, we have $\Delta G^\circ = 161.67$ KJ/mol and $\Delta H^\circ = 192.81$ KJ/mol. At what temperature will the system contain 10 mol per cent bromine atoms in equilibrium with bromine vapour at
- d) If $\Delta G^{\circ} = 0$ for a reaction, the reaction is thermodynamically impossible. Comment.

arge

3 + 2

s of

i be

3

6. a) For the equilibrium $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$.

 $K_p = 8 \times 10^{-9}$ at 127°C. Calculate the degree of dissociation of phosgene and ΔH° for the reaction at that temperature.

[Given : total pressure is 2 atm and ΔS°_{400K} = 30 cal deg $^{-1}$ mole $^{-1}$] 4

b) Derive the relation
$$\sum_{i} n_{i} d\mu_{i} = 0$$
.

c) A solute goes into solution with evolution of heat. How will the solubility change with temperature? Assume van't Hoff equation to apply in case of solubility.

SUB.-B.Sc.(HN)-CEMA-6044

[Turn over

d) What is meant by chemical potential (μ) of a substance ? Is it an extensive property ? Explain the significance of μ with regard to equilibrium state of a system.

UNIT-II

- 7. Define conductance, specific conductance and equivalent conductivity of an electrolyte solution. Write down the SI units of each quantity. $3 + 1\frac{1}{2}$
 - b) While ionic mobility increases with temperature, both the transport numbers of H $^+$ and Cl $^-$ ions in aqueous solution of HCl approach 0.5 as the temperature is increased. Justify or criticize. $2\frac{1}{2}$
 - The standard reduction potentials for Fe ⁺³, Fe ⁺²: Pt and Sn ⁺⁴. Sn ⁺²: Pt at 25°C are 0.77V and 0.15 V. Set up the cell, write down the cell reactions and calculate the equilibrium constant of the reaction occurring in the cell.
- Discuss the principle of determination of pH of a solution using a glass electrode.
 - b) Given that E° is 0.152 for Ag + I' = AgI + e^- at 25°C and E° for Ag = Ag⁺ + e^- is -0.800 V at 25°C. Calculate K_{sp} for AgI.

it an

3

ivity of $3 + 1\frac{1}{2}$

nsport

0.5 as $2\frac{1}{2}$

n +2 :Pt

he cell

eaction

a glass

3

E° for

2

c) A conductivity cell has a resistance of 250 Ω when filled with 0.02 M KCl at 298 K and one of $10^{5}\Omega$ when filled with 6×10^{-5} M NH₄OH solution. The specific conductance of 0.02 M KCl is 0.277 Ω^{-1} m⁻¹ and the equivalent conductances of NH₄⁺ and OH⁻ are 7.34×10^{-3} and 0.0198 m² equiv⁻¹ Ω^{-1} respectively. Calculate the cell constant and the degree of dissociation of NH₄OH solution in 6×10^{-5} M solution.

d) Define buffer capacity. Find the condition when it has maximum value.

2 + 2